
Understanding the Efficacy of Power Profiles:
A Case Study of AMD Instinct MI100 GPU

IEEE HPEC 2024

Ghazanfar Ali 1, Mert Side 1, Sridutt Bhalachandra 2, Tommy Dang 1,
Alan Sill 1, Yong Chen 1

1Texas Tech University 2Lawrence Berkeley National Laboratory

September 25th, 2024

Mert Side (Texas Tech University) Understanding the Efficacy of Power Profiles September 25th, 2024 1 / 16



Table of Contents

1 Introduction
Problem Definition
Motivation
Contributions

2 Methodology
Experimental Setup
Overview

3 Evaluation
Performance
GPU Frequency
GPU Temperatures
Power Consumption

4 Conclusion
Summary
Future Work

Mert Side (Texas Tech University) Understanding the Efficacy of Power Profiles September 25th, 2024 2 / 16



Introduction Problem Definition

Introduction

The exponential performance increase in computing is slowing as Moore’s Law reaches its
limits. Therefore, future computational capabilities are expected to rely heavily on
accelerators like GPUs.

GPU power consumption has significantly increased with each new generation.

The Frontier supercomputer, with AMD MI250X GPUs, uses over 20 MW of power, with
GPUs accounting for 80% of node power.

Effective GPU power management is crucial for large systems like Frontier and LUMI.

The effectiveness of GPU power controls, such as power profiles, is not well understood.
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Introduction Motivation

Motivation

In this study, we investigate the following questions:

1
Is TDP rating a reliable metric for estimating the power budget of a node?

2
What impact do the GPU power profiles have on GPU and workload parameters?
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Introduction Contributions

Contributions

This study provides the following key insights:

In-depth analysis of GPU power management:
We provide a comprehensive analysis using various workloads to give researchers and architects
a foundational understanding of MI100 power management, which is crucial for future
energy-efficient GPU designs.

Evaluation of the supported power profiles:
We evaluated MI100 GPU power profiles and found that altering the profile had little effect on
key metrics such as power consumption, performance, and temperature. Additionally,
workload-specific insights of these behaviors were provided.
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Methodology Experimental Setup

Experimental Setup

The study was conducted on an AMD
MI100 GPU within the ChameleonCloud
testbed, running Linux Ubuntu 20.04.

rocm-smi was used for power profile
management and metric collection.

Exclusive node access was ensured for data
integrity.

The experimental setup included an AMD
EPYC 7763 CPU and an AMD Instinct
MI100 GPU.

Table 1: Specifications of the AMD Instinct MI100
used in this study.

Specification Description
GPU Frequency Range (MHz) Up to 16 configurations [300:1502]
Memory Frequency 1200 MHz
TDP 290 W
GPU Memory (HBM2) 32 GB
Peak Memory Bandwidth Up to 1228.8 GB/s
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Methodology Experimental Setup

Experimental Setup (cont’d)

Table 2: List of applications used in this study.

Category Applications
HPC GROMACS, LAMMPS , NAMD,

SPECFEM3D
Machine Learning BERT, ResNet50, LSTM
Benchmarks DGEMM, STREAM

A diverse set of workloads tested the
GPU’s computational and memory
capabilities.
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Methodology Overview

Overview of Methodology

Change Profile

Power Profiles

4-BOOTUP

1-VIDEO
2-COMPUTE
3-POWER SAVING

(1)
Execute Workload

(2)
Metric Collection

(3)

rocm-smi
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New profile
(5)
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Figure 1: Overview of the methodology to
understand the efficacies of the AMD MI100 GPU
power profiles.

Metrics include power usage, voltage,
temperatures, clock speeds, GPU, FLOPS,
memory usage, and bandwidth.

Sampled every 250 ms to balance
overhead and statistical significance.

Collected for the default and pre-defined
power profiles: video, compute, power
saving, and bootup default.

Each profile was tested three times to
reduce run-to-run variations.
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Evaluation Performance

Performance: Time, GFLOPS/s, and Bandwidth

Table 3: Execution time (seconds) of workloads for each MI100 GPU
power profile.

COMPUTE POWER SAVING BOOTUP DEFAULT VIDEO AUTO
LAMMPS 14 14 14 14 14
NAMD 78.7 78.7 78.9 78.7 78.3
GROMACS 112.7 112.1 112.8 112.5 112.4
SPECFEM3D 180 180 179.9 179.9 180.1
ResNet50 63.9 64.2 63.2 63.8 63.2
LSTM 30 29.2 29.4 30.4 29.4
BERT 277.6 278.1 279.2 277.2 279.2
DGEMM 727.2 728.1 726.5 729.5 727.9
STREAM 467.6 467.6 467.6 467.6 467.6

Power profiles had no noticeable impact on key
performance metrics, including execution time,
GFLOPS/s, and memory bandwidth.

Execution times for various workloads remained
consistent across all power profiles, as shown in
Table 3.

Figure 2: Left illustrates the GFLOPS per second for all the power
profiles using DGEMM. Right illustrates the GPU memory bandwidth
(GB/s) for all the power profiles using STREAM.

DGEMM and STREAM achieved over 80% of their
peak performance in terms of FLOPS/s and
bandwidth, respectively.

The variation in FLOPS/s across profiles was minimal
( 38 GFLOPS/s) and close to run-to-run variation,
making it insignificant, while STREAM’s bandwidth
remained unchanged across profiles.

Mert Side (Texas Tech University) Understanding the Efficacy of Power Profiles September 25th, 2024 9 / 16



Evaluation Performance

Performance: Time, GFLOPS/s, and Bandwidth

Table 3: Execution time (seconds) of workloads for each MI100 GPU
power profile.

COMPUTE POWER SAVING BOOTUP DEFAULT VIDEO AUTO
LAMMPS 14 14 14 14 14
NAMD 78.7 78.7 78.9 78.7 78.3
GROMACS 112.7 112.1 112.8 112.5 112.4
SPECFEM3D 180 180 179.9 179.9 180.1
ResNet50 63.9 64.2 63.2 63.8 63.2
LSTM 30 29.2 29.4 30.4 29.4
BERT 277.6 278.1 279.2 277.2 279.2
DGEMM 727.2 728.1 726.5 729.5 727.9
STREAM 467.6 467.6 467.6 467.6 467.6

Power profiles had no noticeable impact on key
performance metrics, including execution time,
GFLOPS/s, and memory bandwidth.

Execution times for various workloads remained
consistent across all power profiles, as shown in
Table 3.

Figure 2: Left illustrates the GFLOPS per second for all the power
profiles using DGEMM. Right illustrates the GPU memory bandwidth
(GB/s) for all the power profiles using STREAM.

DGEMM and STREAM achieved over 80% of their
peak performance in terms of FLOPS/s and
bandwidth, respectively.

The variation in FLOPS/s across profiles was minimal
( 38 GFLOPS/s) and close to run-to-run variation,
making it insignificant, while STREAM’s bandwidth
remained unchanged across profiles.

Mert Side (Texas Tech University) Understanding the Efficacy of Power Profiles September 25th, 2024 9 / 16



Evaluation GPU Frequency

GPU Frequency

AMD MI100 supports GPU frequencies from 300 MHz to 1502 MHz and a single memory frequency of
1200 MHz, which are controlled internally by power profiles based on workload activity.

Power profiles do not significantly affect GPU frequency variations during workload execution.

For hybrid workloads (GROMACS, LAMMPS, NAMD, SPECFEM3D), GPU frequency fluctuates as the
CPU offloads chunks of work to the GPU, leading to frequent switches between low and high frequencies.

For machine learning workloads (ResNet50, BERT, LSTM), the frequency generally remains high during
each epoch, with LSTM running at a constant high frequency due to needing only one epoch.

GPU-only workloads (DGEMM, STREAM) run continuously at higher frequencies after code and data are
transferred to GPU memory.

Peak operating frequencies are inversely related to computational intensity, with more compute-intensive
workloads like DGEMM and SPECFEM3D running at lower frequencies.
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Evaluation GPU Temperatures

GPU Junction, HBM, and Edge Temperatures

Power profiles had a similar impact on GPU
junction, HBM (memory), and edge temperatures
across all workloads.

Edge temperatures were consistently lower than
junction and memory temperatures.

Compute-intensive workloads like DGEMM,
GROMACS, LAMMPS, and NAMD led to a
significant rise in junction temperatures, with
DGEMM reaching up to 76°C.

Memory-intensive workloads, such as STREAM
and SPECFEM3D, caused memory temperatures
to increase, with STREAM reaching 80°C.

Figure 3: Impact of the power profiles on GPU junction, memory, and
edge temperatures (◦C) for each workload.

Despite the temperature increases, no thermal
throttling was observed during the executions.
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Evaluation Power Consumption

Power Consumption

Power profiles affected power consumption similarly across all workloads, influenced by
thermal conditions, computational intensity, frequency, and voltage.

No thermal throttling was observed, allowing workloads to use power up to the GPU’s
thermal budget.

Compute-intensive workloads used lower frequency and voltage to prevent exceeding
the TDP, while hybrid and memory-intensive workloads operated at higher frequencies
and voltages.

These trends highlight that MI100 power management is inversely proportional to
workload intensity, with more compute-heavy tasks operating at lower frequencies and
voltages to manage power usage.
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Evaluation Power Consumption

Power Consumption (cont’d)

TDP Violation Magnitude:

Some workloads exceeded the manufacturer’s TDP limit, with GROMACS exceeding the TDP by 30%.
Low-intensity workloads like STREAM and LSTM stayed within the TDP limit. AUTO profile typically
resulted in fewer TDP violations.

Figure 4: The magnitude of TDP violations for workloads across MI100 power profiles.
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Evaluation Power Consumption

Power Consumption (cont’d)

TDP Violation Frequency:

HPC workloads frequently exceeded TDP ( 20%), while ML workloads had fewer violations ( 10%).

Figure 5: The frequency of TDP violations during the run of workloads across MI100 power profiles.
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Conclusion Summary

Summary of Findings

Our key findings include the following:
1 Power profiles offer similar power, performance, and utilization metrics across workloads,

showing limited adaptability for dynamic power control.

2 TDP breaches were common, with some workloads, like GROMACS, exceeding the TDP by
45% for over 20% of runtime, suggesting a need for overprovisioning in data center designs.

3 Compute-intensive tasks saw frequency and voltage reductions of up to 50%.

4 Memory-intensive tasks like STREAM experienced significant temperature increases (80°C),
raising concerns about memory reliability.
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Conclusion Future Work

Conclusion

This study highlights the importance of GPU power management in addressing rising
power demands and improving energy efficiency in HPC environments.

We analyzed the power consumption patterns of the AMD MI100 GPU across various
real-world workloads, focusing on how power management adheres to TDP limits and is
influenced by computational characteristics.

Future work will explore the power, performance, and thermal behaviors of newer AMD
GPU architectures to broaden understanding of GPU power management practices across
different platforms.

Thank you! Let us know if you have any questions?
E-mail: mert.side@ttu.edu
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